
International Journal ofTheoreticalPhysics, Vol. 15, No. 4 (1976) pp. 247-261 

On the Transformation of Mass and Momentum Densities in 
Special Relativity 1 

G. H. HOSTETTER 

Electrical Engineering Department, CaliJornia State University, Long Beach, 
California, 90840 

Received: 28 February 1975 

Abstract  

By considerLng the mass and momentum densities of a point mass moving at uniform 
velocity, the known transformation of these densities from a representation in one 
inertial system to another is easily derived. The transformation is not linear in mass 
and momentum density, but  the introduction of  a dyadic stress density tensor gives a 
linear relation. The transformation is shown to hold for a general continuous mass 
distribution in which mass and momentum are conserved, provided a specific choice is 
made for the stress density tensor. This result contrasts with the particle viewpoint of 
matter in which only the divergence of  the stress density tensor need be fixed so far as 
the transformation is concerned. A change.of functions is made which greatly simplifies 
the transformations. The new functions are shown to represent a conserved fluid. 

1. Introduction 

In tiffs paper, the transformation of  representations of  mass and momentum 
densities from one inertial system to another are investigated. Although the 
mass density transformation has been known for many years (Lorentz, 1927, 
sections 37-38; MNler, 1972, chap. 6), its application has been largely con- 
t'med to the behavior of particles, where some subtleties are apt to be over- 
looked. 

This investigation assumes a deterministic model of  continuously distri- 
buted mass. For this purpose, either a macroscopic viewpoint is adopted, 
similar to that of  electromagnetics, or this analysis is presumed to extend into 
the interior of  molecules. 
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The development here parallels modem work in electromagnetic theory 
(Elliott, 1966). The transformation itself is analogous to, but considerably 
more involved than, the charge density and current density transformation of 
electromagnetics (Stratton, 1941, pp. 74-80). 

The paper and results are organized as follows: In section 2 the basic 
theory of special relativity that is necessary to the sequel is developed. This 
development also serves to introduce much of the notation that is used later. 

In section 3 the special relativity transformations of the net charge, mass, 
and momentum of a body are used to derive transformations of the densities 
of these quantities, for bodies traveling at uniform velocities in an inertial 
frame. 

The main results begin in section 4, in which the transformations of the 
preceding section are shown to be general ones, provided a certain specific 
choice of stress density tensor is made. 

In section 5, the transformations are simplified by the introduction of new 
ftmctions, and these functions, one a scalar, the other a vector, are shown to 
be related by a continuity equation. 

2. Preliminaries 

The results of the special theory of relativity that are of  particular 
importance to the work to follow are now summarized and notation is 
introduced. 

The transformation o f velocity, because its development is so often linked 
to the motion of particles in introductory texts, is here presented in terms of 
parametric equations of motion, a viewpoint more in keeping with the 
continuum model of the following sections. 

Special Relat iv i ty  Coordinate Transformations. Consider two Cartesian 
coordinate systems, (x, y, z) and (x', y ' ,  z'), with the respective axes of the 
two systems aligned and the x '  axis moving in the x direction with constant 
velocity v. For simplicity, let the times in the unprimed system, t, and in the 
primed system, t', both be taken to be zero when the origins of the two 
systems are coincident. 

The Lorentz transformation, which relates the position and time of an 
event in one such inertial system to the position and time of the same event 
in the other inertial system, is 

x '  = K ( x  - vt) 

y '  = y  

g' =Z 

t' = K [ t - (vx/c2)  ] (2.1) 

where 

K =  1~[- - (v /c )  21 
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The transformation from the primed to the unprimed system has the 
same form, with v replaced by -v .  

Velocity Transformations. Let the parametric functions X(t), Y(t), Z(t) 
express a time-varying position, possibly that of a particle, in the unprimed 
system. The coordinates of the same time-varying position in the primed 
system are 

X'(t) = K [X(t) - vt] 

Y'(t) = Y(t) 

z ' ( o  = z ( t )  

To express these coordinates in terms of the time in the primed system, 
t', it is necessary to substitute 

t = K[t '  + (vX'/e2)] 

which, itself, involves the position, X'. 
While solving for X'(t ') ,  Y'(t ') ,  and Z'(t ' )  given specific X(t), Y(t), and 

Z(t) can be quite involved, comparison of the velocities in the two systems 
may be done easily and in general. Let 

u x = dX/dt,  Uy = dY/dt ,  Uz = dZ/dt  

and let 

then 

! r t 
u x = d X ' / d t  ', u y = d Y ' / d t ' ,  u z = d Z ' / d t  ' 

u~ -- (u~  - ~ ) / [ i  - (VUx/C~)]  
t Uy = uy/K[1 - (gUx/C2) ] (2.2) 
t 

u z  = u z / K [ 1  - ( v u x / e 2 ) ]  

The transformation from the primed to the unprimed quantities has the same 
form, with v replaced by -v .  

The velocities u and u' may be time varying; it is not required that they be 
constant. 

Transformations o f  Net  Charge, Mass, and Momentum. If charge is con- 
served in an inertial system, special relativity predicts that the net charge of 
a body does not depend upon its velocity (Einstein, 1905, section 9): 

Q' = Q (2.3) 

If momentum is conserved in all inertial systems, special relativity predicts 
that the mass of a body depends upon its velocity according to 

M = KMo 

where Mo is the mass of the body when at rest (MCller, 1972, pp. 65-68). 
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To obtain the general transformation for net mass, consider a mass with 
velocity u in the unprimed system. In that system the mass of the body is 

M =  Mo/[1  - (u/e) 2] 1/2 

while in the primed system, the mass of the same body is 

m' = mo/[1 - u'/c) 2] I/2 

giving 

M' = K [1 - (VUx/C2)] M (2.4) 

Identifying the x momentum of the mass as Px = Mux, the mass trans- 
formation (2.4) may be written as 

M' (, ,/e2)e,:] 

Similarly, the combination of (2.4) and (2.2) gives 

f x = = I,:(ux - v ) M  = K ( e x  - vM) 

t Py = g u y  = Muy = Py 

e ;  = e z  

The linearity of these transformations, the transformation coefficients 
depending only upon the relative velocity of the inertial systems, v, makes 
them vafid for a body consisting of a number of component masses (includ- 
ing, of course, any mass energy of interaction), each moving at different 
velocities. 

3. Transformations when the Body Has Uniform Velocity 

In this section, the transformations of charge density and mass density are 
developed for bodies traveling at uniform velocity in an inertial frame. This 
development is done easily and simply by employing Dirac delta functions to 
represent point charges and masses. 

Since the results for charge and charge density are generally much more 
familiar than those involving mass density, the results of etectromagnetics 
serve to demonstrate and give confidence in the method prior to its applica- 
tion to the more complicated case of distributed mass. 

The need for a third quantity, stress density, in addition to mass density 
and momentum density is shown to arise quite naturally from the trans- 
formations themselves, rather than from a priori considerations involving 
forces or pressures. This leads, eventually, to a unique description for stress 
density. 

Transformation of  Charge and Current Densities. To determine how the 
charge density of a body must transform from one inertial system to another, 
consider the density of a point charge moving at uniform velocity u in the 
unprimed system. This charge density will be represented by Dirac deka 
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functions (Zemanian, 1965). If, in the tmprimed system, the point charge 
has net charge O and is, for simplicity of  notation, located at the origin at 
t = 0, the charge density is 

p ( x , y ,  z, t) = O 6 ( x -  U x t ) 6 ( y -  U y t ) 6 ( z -  uz t  ) 

The same point charge will have density 

p'(x ' ,  y ' ,  z',  t ') = Q'6(x '  - u 'xt ' )6(y'  - U'yt')8(z' - U'zy' ) 

in the primed system. Substituting (2. t )  ' ', z', t', for x ,  y and (2.2) for Ux', u'y, 
and u'z, and (2.3) for Q' gives 

p' = Q6{(x  - Uxt) /K[1 - (VUx/e2)] } 6(y  - uy t )6 ( z  - uz t  ) 

Since 6(ax) = 6(x) /a  i fa  is a positive constant, we have 

p' = K [1 - (VUx/e2)] p 

Identifying the current density components 

& = p u ~ ,  Jy=pUy ,  & = # u z  

there results 
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p' = K [~ - ( v / c2 )4  ] 

4 = P'Ux = K ( u x  - P)P = K ( J x  - up) 
4 = J y  (3.1) 

4--4 
The equations (3.1) relate the charge and current densities of  a body moving 

with uniform velocity in one inertial system to the charge and current densities 
of  the same body as viewed in another inertial system. Since they do not 
involve the velocity of the body directly, they are valid for any number of 
bodies, each of which is moving with various uniform velocities. 

In section 4, it will be shown that a general distribution of charge and 
current may be decomposed into a set of  component charge distributions, 
each of which has uniform velocity. Thus (3.t)  becomes a general trans- 
formation, applicable to arbitrary charge and current distributions. 

Transformations o f  Mass and M o m e n t u m  Densities.  To determine how the 
mass density of a body must transform from one inertial system to another, 
the same analysis will be performed as was done with charge density. The 
resulting transformations are not linear in mass and momentum density, a 
result which will give fundamental importance to the stress density tensor. 

If, in the unprimed system, a point mass moving at uniform velocity with 
net mass Mand uniform velocity u is at the origin at t = 0, the mass density is 

m ( x , y ,  z, t) = M S ( x  - Uxt)6(y  - uy t )6 ( z  - uz t )  
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The same point mass will have density 

! P I ! I I t 
m (x , y ,  z ,  t ' )  = M ' f ( x '  - U'xt')6fy' - Uyt )6(z  - U'zt') 

in the primed system. Substituting (2.1), (2.2), and (2.4) gives 

m'  = M K  [1 - (vux/e2)] 6{(x - Uxt) /K [1 - (uuxle2)] } 

x ~ ( y  - U y t ) 5 ( z  - u ~ t )  

= K 2 [1 -- (VUx/C 2] am (3.2) 

Similarly, the transformation of  the momentum density of  a mass distri- 
bution is found to be 

P'x = K 2  [1 - (vuxlcU)] [1 - (V /ux) lPx  
t 

p y  = K[1 - (VUx/e2)] py  (3.3) 

P'z = K[1 - (VUx/C2)] Pz 

In t roduc t ion  o f  the  Stress Dens i t y  Tensor. The transformations of  mass 
(3.6) and momentum (3.3) densities cannot be expressed as a linear combina- 
tion of  the quantities (with coefficients which are only functions of  the 
relative coordinate velocity, v), although the mixed linear relation 

m' + (v /cZ)px  ' =  rn - (v /c2)px  

may be easily derived. 
By defining 

b n  = mUx 2 = pxUx 

b21 = mUyU x = pyU x 

b 3 1  = mUzU x = PzUx 

however, the mass and momentum density transformations may be written 
as the linear equations 

m' = K 2 [m - (2u/e2)px + (v2 /eg)b 11] 

Px =K2{[  1 + (v /e)=]Px - ( v / e2 )b t l  - urn} 
t 

p y  = K [ p y  - (v /c2)b21]  
t 

Pz = K[Pz  - (u/e2)b3~] 

The b's also transform linearly: 

brll = K 2 ( b l l  - 2VPx + v2m)  
! 

bzl = K(b21 - -  Vpy) 

b'31 = K(b31 - vpz)  

(3.4) 

(3.s) 
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The other components of the dyad 
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2 b = pu = 

PxUx PxUy DxUz] 

pyUx Oyuy pyuz I 

PzUx pzUy PzUzJ 

which would enter into a more general I_x)rentz transformation, transform 
linearly as 

t t r 2 
b 2 2  = m U y  = m U y  2 = b 2 2  

t r t ? r 
b23 = b32 = m UyUz = mUyU z = b23 = b32 

t 2 
b'33 = m u z = mUz 2 =b33 

(3.6) 

Validity o f  these ResuIts. Equations (3.4)-(3.6), analogous to (3.t), relate 
the mass, momentum, and stress densities of a body moving at uniform 
velocity in one inertial system to the same quantities as viewed in another 
inertial system. Since these equations do not involve the velocity of the body 
directly, they are valid for any number of bodies, each of which is moving at 
various uniform velocities. 

In section 4 it will be shown that a general mass, momentum, and stress 
distribution may be decomposed into a set of component functions, each of 
which has uniform velocity. Thus (3.4)-(3.6) will become general trans- 
formations, applicable to arbitrary mass, momentum, and stress distributions. 

4. General Density Transformations 

In this section, the previously derived transformations, restricted to bodies 
moving with uniform velocities, are shown to be valid in general by demon- 
strating that the general functions may be decomposed into a set of uniform 
velocity component functions. 

The method of decomposition of a general charge and current distribution 
into a set of uniform velocity distributions is due to Elfiott (1966; pp. 150- 
152). It is here extended to distributions of mass, momentum, and stress, 
with interesting results, recognizing the necessity of linear transformation 
equations together with the proper continuity relations. 

Decomposition o f  a General Charge and Current Distribution. The general 
validity of  the transformations (3.1) is assured if an arbitrary set of  charge 
and current densities may be decomposed into a set of charge distributions 
moving at various uniform velocities. Each member distribution of the set 
would be static in some Lorentz frame. 
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Let *J(kx, ky, kz, co) be the fourfold Fourier transform of a general 
current density function: 

k,,  o)=ff f f J(x,y,z, t) 
_ o o  

x e - i  (kxx + kyy + kzz + cot) d x  dy dz  

Similarly, let *p(kx, ky, kz, co) be the transform of a general charge density 
function. 

The continuity equation for charge and current densities (Stratton, 1941, 
p. 5, pp. 69-72),  

requires that 

where 

V "J + ap/at = o (4.1) 

*p = - (k " *J) /w 

k = kx.~ + kyfi + kz2 

and 2, 33, ~ are unit vectors in the x, y, and z directions, respectively. 
If the charge and current densities in the interval (dk, dco) are treated as 

an isolated component  of  J and p, then this distribution satisfies 

dJ = (dp)u 

where 

u(k,  co) = * J / *p  = (co*J) / (k"  *J). 

This velocity is independent o f  x, y,  z, and t and so is a common velocity 
shared by all parts of  this fictitious component  of  J, p. 

Some of  these component  charge and current densities have velocities in 
excess of  the speed of  light. While such components might not be regarded as 
being physical entities, they are quite admissible mathematically (Etliott, 
1966, p. 152). 

Thus (3.1) is a general transformation, not limited to charge distributions 
moving at uniform velocity. 

Continuity Equations for Mass and Momentum. To the extent that an 
arbitrary mass distribution may be expressed as the sum of static mass 
distributions in various Lorentz frames, (3.4)-(3.6) may be used to trans- 
form a general mass and momentum distribution. The validity of  such a 
general decomposition of  mass and momentum densities is assured if proper 
continuity relations between m, p, and 2~b exist, as was the case with the 
charge and current densities, (4.1). 

The continuity equation 

V ' p  = -am~at (4.2) 
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expresses the conservation of mass and is firmly established in present theory 
(Jammer, 1964). 

The second continuity equation that we require is 

V" % = - a p / ~ t  (4.3) 

which expresses the conservation of momentum. It is equivalent to the three 
scalar equations 

V" bx = - ~ p x / ~ t  

V "by = --~py/~t  

V" bz = --OPz/~t 

where 

b x = b 1t9C + b 1233 + b 13 ~ 

by = b21.~ + b22) ~ + b23z 

b z = b31~ + ba2.y + b33z 

This continuity equation, too, is well established in continuum theory 
(Lindsay, 1969), where the quantity Zb is known as the stress density tensor. 
Only the divergence of Z b is fixed, however, leaving as yet unanswered 
questions regarding its physical, measurable, existence. This situation is 
analogous to that with the Poynting vector of electromagnetic fields 
(Stratton, 1941, pp. 131-I 37), where any number of vector fields besides 
E x H might represent the flow of electromagnetic energy. 

In a later section it will be demonstrated that the adoption of (3.4)-(3.6) 
as general transformations, not limited to masses traveling at uniform velocity, 
demands a specific ~b, not just one with fixed divergence. 

Transformation o f  the Continuity Equations. Because the continuity of 
momentum (4.3) is less familiar than the continuity of  mass (4.2) to most and 
because both are of  fundamental importance to the development to follow, 
their interrelationship is now examined. In particular, the transformation of 
these equations from one inertial system to another is used to demonstrate 
that continuity of mass implies continuity of momentum and vice versa. 

Transformation of 

V' " P' + Om'/8t' 

by (3.4)--(3.6) and (2.1) gives 

K(V" p + 8m/8t)  - (Kv/c2X V " bx + Opx/Ot) (4.4) 

Similarly, 

V t b ~  + ap'~lat' 
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transforms as 

K(V "bx + Opx/Ot) - Kv(V" p + Om/Ot) 

The combination of  quantities 
v '  ' 

transforms as 

and 

transforms as 

V "by + apy /a t  

v "  b~ + ap'z/at' 

(4.5) 

V" bz + ~pz/~t  

The continuity equations (4.2) and (4.3) are thus linked to one another 
under special relativity. I f  the continuity equation for mass is true in all 
inertial systems, the continuity equation for momentum necessarily also 
must hold in all inertial systems. 

Decomposit ion o f  a General Mass Distribution. The general validity of  the 
transformations of  mass, momentum,  and stress densities (3.4)-(3.6) is 
assured if an arbitrary set of  these quantities may be decomposed into a set 
of  component  distributions moving at various constant velocities. 

Let *m, * p= *pxfc + *pyy + *pzz, ~*b x,  *by, and *bz be the fourfold 
Fourier transforms of  the densities m, p, b x, by, and bz, respectively, 
associated with a general distribution of  these quantities. For example, 

• m(kx, kr, kz, )=ff f fm(x,y,z,t) 
x e - i(kxx + kY y + k z z  + ~ ° O d x d y d z  

The continuity equation for mass (4.2) requires that 

• m = - (k-  *p)/o~ (4.6) 

and continuity equation of momentum (4.3) requires that 

• p x  = - ( k -  * b ~ ) / ~  

• py  = -- (k • *by)/O) (4.7) 

• Pz = - (k " *bz)/Co 

I f  the various densities in an interval (dk, d w )  are treated as an independent 
entity, for example 

dm = (1/27r) *me i(kxx + kyy  + kzz  + wt) (4.8) 

x dkx  d k y  dkz  do~ 
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then those components of the overall densffies satisfy 

do = (dm)u 1 

where 

and 

where 

where 

where 

ul(k, co) = *p/*m = - (co*p)/(k • *p) 

dbx = (dPx)u2 

u2(k, co) = *bx/*Px = - (co*bx)/(k" *bx) 

dby = (dpy)U 3 

u3(k, co) = *by/*py = - (co*by)/(k "*by) 

db z = (dpz)U4 
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U 1 = U 2 = U 3 = U 4 

The mass, momentum, and stress density transformations (3.4)-(3.6) 
become general relations when, of all possible 2b distributions satisfying 
the continuity relation (4.3), the field for which (4.9) is also satisfied is 
chosen. 

Combining (4.7) and (4.9), there results 

*2b = (*p*p)/*m (4.10) 

in which the Fourier transformed stress density tensor is expressed in terms 
of the momentum and mass density transforms. 

u 4 ( k ,  co )  = * b z l * p  z = - -  ( c o * b = ) l ( k  • * b z )  

It remains to be shown that the four velocities defined above, u 1, u2, u3, 
and u4, are identical or may be chosen to be identical and equal to the 
velocity of  each of the moving distributions of  fixed shape (4.8). Then, a 
general density of m, p, 2b may be decomposed into a set of  uniform velocity 
mass distributions, all of which are related by equations (3.4)-(3.6). 

A Specific Stress Density Tensor. The vector fields *bx, *by, and *b e may 
each have any directions at each position in space and still maintain the 
relationships to *p required by (4.7). Choosing 

dir *b x = dir *by = dir *bz = dir *p (4.9) 

gives  
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I f  (4.10) does not hold, the transformations (3.4)-(3.6) must contain 
additional terms and/or there must be additional relations among m, p, and 
2b, as may be demonstrated by considering an accelerating mass in a manner 
similar to that given in section 3. 

5. ObJective Function Formulation 

It is now shown that the Lorentz transformation of  Fourier transformed 
quantities is of the same form as the space and time domain transformations. 

New functions are then introduced so that the Lorentz transformations of  
mass, momentum, and stress density are simplified to a form identical to the 
transformations of  electric charge and current density. 

The new functions, one a scalar and one a vector, are shown to satisfy a 
continuity equation, a circumstance which gives rise to speculation as to the 
physical significance of these quantities in the final section. 

Lorentz Transformations o f  Fourier Transforms. Consider a function that 
Lorentz-transforms as 

f ' ( x ' ,  y ' ,  z', t') = Cf(K[x' - (v/c2)t'], y ' ,  z', K ( t  ' - vx')} 

where Cis a constant. The fourfold Fourier transform of the func t ion f  
Eorentz-transforms as 

~ / , t /  t t r 2 ~" t ! 
J I x ,  y ,  z ,  t') = C*f{K [k x - ( v / c ) w  1, ky, kz, K(a)' - vkx) } 

The Fourier-transformed quantity Lorentz-transforms in the same manner as 
the space and time domain in quantity, with 

k'x = K(kx  - vog) 
t 

ky = ky (5.1) 
k'~ = / %  

~' = /~[~-  (v/c2)Xx] 

Applying the above principle to (3.4)-(3.6) gives 

*m' = K 2 [*m - (2u/c2)*px + (u2/c4)*bn] 
t Px =K2{[  1 + (v/c) 2] *Px - (v/c2)*bll -- v ' m }  
t 

py = K [*py -- (v/c2)*b21] 
, P o2 = K [ * p z  - (v/c2)*b31] 
*b'11 = K2(*b~l - 2V*Px + v 2*m) 
, I 
b21 = K(*b21 - V*py) 

t 
bal =K(*ba l  - V*Px) 

:,I¢ ¢ 
b 2 2  = * b 2 2  
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* b ; 3  = *b23 

* ' = ( 5 . 2 )  b33 *b33 

where the substitutions of variables (5.1) are understood. 

Density Transformations in Terms o f  the Objective Functions. Examination 
of equations (5.2), using the relation (4.10), indicates the expediency of 
function changes for the purpose of simplification. Defining new functions, 
here called objective functions for the distribution of mass and momentum, 

*e --= ~ / ~  
(5.3) 

*a--  * p / v ~  

the Fourier transforms of the densities become 

*m = (*e) 2 

"13 = *e*a (5.4) 

and, using (4.10), 
*2b = *a*a (5.5) 

The algebraic sign in the definition of *e is as yet ambiguous, but it will be 
advantageous to make symmetric selections so that e and a are real functions. 

In terms of the objective functions, the density transforms (5.2) Lorentz- 
transform as 

* m '  = ( * e ' )  2 = ( K [ * e  - (v/e2)*a~l)2 
, v = ,  v ,  v 

Ox a x e  ( K [ * a x - v * e ] } { K [ * e - ( v / c 2 ) * a x ] }  
, t , v , v 

Oy = ay e = ( * a y } ( K [ * e -  (v/cZ)*ax] } 
, p = ,  t ~ ¢ Pz a z e = (*az} (K [*e - (v/e2)*ax] } 

, b t l l  , r ,  t = "ax ax = ( K [ * a x  - v*e ]  } {K[*ax  - v * e ]  ) 

b2a ay a x =(*ay){K[*ax - v*e] 

b31 a~ a x = {*az}{K[*ax - v*e] 
¢. t = , t ~ ¢  
b22 ay ay = (*ay){*ay} 

b23 ay az = (*ay}{*az} 
, V = ,  v ,  t 

b33 az a z=(*az ) (*az}  

showing that these equations are expressed much more easily using the 
objective functions (5.3)-(5.5) and their transformations, 

*e' = K[*e  - (v/e2)*a~] 

ax = K[*ax - v'el 
, ,  = (5 .6)  
ay *ay 

r 
a z = *az 
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The objective functions transform in the same manner as do the charge 
and current densities. 

Objective Function Continuity. The continuity equation (4.6), 

* m  = - ( k .  * p ) / w  

is, in terms of  the objective functions, 

*e = - (k • *a)/~ 

giving 

V " a = -  ae/at 

in the space and the time domain. 
Thus the existence of  a conserved fluid, related to the mass fluid, is 

established. 

(4.6) 

6. Conclusion 

The Lorentz transformation of  the mass and momentum densities of 
bodies moving at uniform velocity were derived by considering the density 
of  a point mass. 

To eliminate the restriction of  uniform velocity and thus to develop a 
general transformation, a decomposition of  a general mass distribution into 
uniform velocity components was attempted, paralleling the electromagnetic 
result. Such a decomposition was shown to be possible with the specific 
stress density tensor given by (4.10). 

The choice (4.10) is not only sufficient; it is necessary unless the density 
transformations are yet more complicated than those given or there are 
additional relations among the quantities involved. 

When the known stress density is substituted into the transformation 
equations, it becomes apparent that these equations may be greatly simplified 
by the introduction o f  the objective functions. 

Further examinations of  the objective functions leads to the result that 
they represent a conserved fluid, which gives rise to the following speculation: 
Are the objective functions in some way related to the electromagnetic 
properties of  a body? 
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